Khovanov homology detects the trefoils

نویسندگان

چکیده

We prove that Khovanov homology detects the trefoils. Our proof incorporates an array of ideas in Floer and contact geometry. It uses open books; invariants we defined instanton setting; a bypass exact triangle sutured homology, proven here; Kronheimer Mrowka's spectral sequence relating with singular knot homology. As byproduct, also strengthen result Mrowka on $SU(2)$ representations group.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Khovanov Homology Detects the Trefoils

We prove that Khovanov homology detects the trefoils. Our proof incorporates an array of ideas in Floer homology and contact geometry. It uses open books; the contact invariants we defined in the instanton Floer setting; a bypass exact triangle in sutured instanton homology, proven here; and Kronheimer and Mrowka’s spectral sequence relating Khovanov homology with singular instanton knot homolo...

متن کامل

Khovanov Homology

A gap was found; the paper needs several corrections.

متن کامل

Odd Khovanov Homology

We describe an invariant of links in S which is closely related to Khovanov’s Jones polynomial homology. Our construction replaces the symmetric algebra appearing in Khovanov’s definition with an exterior algebra. The two invariants have the same reduction modulo 2, but differ over Q. There is a reduced version which is a link invariant whose graded Euler characteristic is the normalized Jones ...

متن کامل

Fast Khovanov Homology Computations

We introduce a local algorithm for Khovanov Homology computations — that is, we explain how it is possible to “cancel” terms in the Khovanov complex associated with a (“local”) tangle, hence canceling the many associated “global” terms in one swoosh early on. This leads to a dramatic improvement in computational efficiency. Thus our program can rapidly compute certain Khovanov homology groups t...

متن کامل

On Khovanov Homology

This paper will start from basic knot theory to define the Jones polynomial, then define and explore Khovanov homology, with computations. Two main goals are to present a proposition about the knot mirror and to explore the Khovanov homology of some classes of knots. Elementary algebra will be the only necessary prerequisite for this paper, though familiarity with basic homology will be useful....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Duke Mathematical Journal

سال: 2022

ISSN: ['1547-7398', '0012-7094']

DOI: https://doi.org/10.1215/00127094-2021-0034